

ProSimTM 2/3 Vital Signs Simulator

Руководство пользователя

FBC 0038 January 2013, Rev. 1 (Russian) © 2013 Fluke Corporation. All rights reserved. Specifications are subject to change without notice. All product names are trademarks of their respective companies.

Гарантия и поддержка прибора

Fluke Biomedical гарантирует отсутствие на этом данном приборе дефектов материалов и сборки на период в течение одного года с момента первоначальной покупки ИЛИ в течение двух лет, если по истечении первого года вы отправите прибор в сервисный центр Fluke Biomedical на калибровку. За подобную калибровку вам придется внести клиентскую плату. В течение гарантийного периода мы отремонтируем или по нашему усмотрению заменим бесплатно прибор, неисправность которого подтверждена, при условии, что вы вернете прибор с предоплаченной транспортировкой во Fluke Biomedical. Данные гарантийные обязательства распространяются только на первоначального покупателя и не могут передаваться другому лицу. Гарантия не распространяется на приборы, которые были повреждены случайно или в результате неправильного использования, либо обслуживались и модифицировались где-либо, кроме авторизованных центров обслуживания Fluke Biomedical. НАСТОЯЩИМ НЕ ПРЕДОСТАВЛЯЕТСЯ, ПРЯМО ИЛИ КОСВЕННО, НИКАКИХ ДРУГИХ ГАРАНТИЙ, КАК, НАПРИМЕР, ГАРАНТИИ ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННЫХ ЦЕЛЕЙ. FLUKE НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА СПЕЦИАЛЬНЫЕ, СЛУЧАЙНЫЕ ИЛИ КОСВЕННЫЕ ПОВРЕЖДЕНИЯ ИЛИ УЩЕРБ, ВКЛЮЧАЯ ПОТЕРЮ ДАННЫХ, ЯВЛЯЮЩИЕСЯ РЕЗУЛЬТАТОМ КАКИХ-ЛИБО ДЕЙСТВИЙ ИЛИ МЕТОДОВ.

Данная гарантия покрывает только серийные приборы и их аксессуары, на которых присутствует различимая метка с серийным номером. Повторная калибровка приборов не покрывается гарантией.

Эта гарантия дает конкретные законные права, и вы можете также иметь другие права, которые могут различаться в различных юрисдикциях. Поскольку некоторые юрисдикции не допускают исключения или ограничения косвенной гарантии или исключения и ограничения случайных или косвенных повреждений, ограничения этой гарантии могут не действовать в отношении вас. Если какое-либо положение этой гарантии признано судом или другим директивным органом надлежащей юрисдикции не действительным или не имеющим законной силы, такое признание не повлияет на действительность или законную силу других положений.

7/07

Примечания

Все права защищены

© Копирайт 2013 Fluke Biomedical. Никакая часть этой публикации не может быть воспроизведена, передана, застенографирована, сохранена в информационно-поисковой системе или переведена на любой язык без письменного разрешения Fluke Biomedical.

Наши координаты

ООО «Флюк СИАЙЭС» 125167, г. Москва, Ленинградский проспект дом 37, кор. 9 Тел: +7 495 664 75 12 Факс: +7 495 664 75 13 Электронная почта: info@fluke.ru

Передача авторского права

Fluke Biomedical соглашается на ограниченную передачу авторского права, позволяющую Вам воспроизводить руководства и другие печатные материалы с целью использования в учебных программах по техническому обслуживанию и в других технических публикациях. Если Вы желаете выполнить другое воспроизведение или распространение материалов, пошлите письменный запрос в Fluke Biomedical.

Распаковка и проверка

При получении этого прибора следуйте стандартной процедуре приемки. Проверьте транспортировочную упаковку на наличие повреждений. При обнаружении повреждения прекратите распаковывать прибор. Известите перевозчика и попросите, чтобы его представитель присутствовал при распаковке прибора. Специальных инструкций по распаковке не существует, однако соблюдайте осторожность, чтобы не повредить прибор при его распаковке. Проверьте прибор на наличие механических повреждений, например, погнутых или сломанных деталей, вмятин или царапин.

Технические консультации

Для технических консультаций по применению или получения ответов на технические вопросы обращайтесь по электронной почте по адресу: techservices@flukebiomedical.com или по телефону 1-800- 850-4608 или 1-440-248-9300. Европа, Электронная почта techsupport.emea@flukebiomedical.com or call +31-40-2675314.

Претензии

Принятый нами способ транспортировки включает в себя использование обычной транспортной компании с нашей ответственностью до пункта отправления (франко пункт отправления). После доставки при обнаружении механического повреждения сохраните все упаковочные материалы в первоначальном состоянии и немедленно обратитесь к перевозчику, чтобы зарегистрировать претензию. Если прибор доставлен в хорошем механическом состоянии, но не работает в соответствии с техническими характеристиками либо имеются другие проблемы кроме повреждений при перевозке, пожалуйста, обращайтесь в Fluke Biomedical или к Вашему местному торговому представителью.

Стандартные условия

Процедура возврата

Все возвращаемые товары (включая все посылки с гарантийными заявками) должны быть посланы с предварительно оплаченными расходами на перевозку на наше производственное предприятие. Для возвращения прибора в Fluke Biomedical мы рекомендуем использовать United Parcel Service, Federal Express, или Air Parcel Post. Мы также рекомендуем страховать Вашу посылку на фактическую цену ее замены. Fluke Biomedical не несет ответственность за пропавшие посылки или приборы, прибывшие с повреждениями из-за неправильной упаковки или обращения.

Используйте для посылки ту коробку и упаковочные материалы, в которых Вы получили покупку. Если у Вас их нет, мы рекомендуем следующие правила упаковки для возвращения:

- Используйте картонную коробку с двойными стенками достаточной прочности с учетом веса посылки.
- Используйте плотную бумагу или картон, чтобы защитить все поверхности прибора. Вокруг всех выступающих частей уложите неабразивный материал.
- Уложите вокруг прибора не менее четырех дюймов плотно уложенного принятого в отрасли амортизирующего материала.

Возврат для частичного возмещения стоимости и/или зачета в счет следующей покупки:

Каждое изделие, возвращаемое для возмещения стоимости и/или зачета в счет следующей покупки должно сопровождаться номером разрешения на возврат материала (RMA), полученным от нашей группы оформления заказов (Order Entry Group), номера телефонов 1-440-498-2560.

Ремонт и калибровка:

Чтобы найти ближайший центр техобслуживания посетите вебсайт www.flukebiomedical.com/service или

В США:

Лаборатория калибровки в Кливленде (Cleveland Calibration Lab) Телефон: 1-800-850-4608 x2564 Электронная почта: <u>globalcal@flukebiomedical.com</u>

Лаборатория калибровки в Эверетт (Everett Calibration Lab) Телефон: 1-888-99 FLUKE (1-888-993-5853) Электронная почта: <u>service.status@fluke.com</u> В Европе, на Ближнем Востоке и в Африке: Лаборатория калибровки в Эйндховене (Eindhoven Calibration Lab) Телефон: +31-40-2675300 Электронная почта: <u>ServiceDesk@fluke.com</u>

В Азии:

Лаборатория калибровки в Эверетт (Everett Calibration Lab) Телефон: +425-446-6945 Электронная почта: <u>service.international@fluke.com</u> Для поддержания точности прибора на высоком уровне, Fluke Biomedical рекомендует выполнять калибровку прибора через каждые 12 месяцев. Калибровка должна проводиться квалифицированным специалистом. По поводу выполнения калибровки свяжитесь с местным представителем Fluke Biomedical.

Сертификация

Этот прибор был тщательно испытан и проверен. Найдено, что при отправке из предприятия он соответствует техническим характеристикам Fluke Biomedical. Калибровочные измерения соответствуют стандартам Национального Института Стандартов и Технологии (NIST). Приборы, для которых нет стандартов калибровки NIST, сравнивались с фирменными эталонами по принятой методике испытаний.

ПРЕДУПРЕЖДЕНИЕ

Неразрешенная модернизация, выполняемая пользователем, или применение за пределами опубликованных технических характеристик могут привести к опасности поражения электрическим током или к неправильной работе. Fluke Biomedical не несет ответственность за причинение любых травм, полученных из-за неразрешенной модернизации оборудования.

Ограничения и ответственность

Информация, содержащаяся в этом документе, может изменяться и не сохраняется Fluke Biomedical в неизменном виде. Изменения в информации, содержащейся в этом документе, будут внесены в новую редакцию этого издания. Fluke Biomedical не принимает на себя никакой ответственности за применение или надежность программного обеспечения или оборудования, если они не поставлены компанией Fluke Biomedical или ее ассоциированными поставщиками.

Расположение предприятия-изготовителя

Тестер тока утечки ультразвуковых датчиков ProSim[™] 2/3 Vital Signs Simulator изготовлен в Эверетт, штат Вашингтон, США (Everett, WA, U.S.A).

Содержание

Название

Страница

Введение	1
Меры безопасности	1
Принадлежности	4
Знакомство с Прибором	5
Сетевой адаптер	8
Включение Прибора	8
Эксплуатация	9
Функции, связанные с деятельностью сердца	10
Функции ЕСС (ЭКГ)	11
Сигналы кардиостимулятора	13
Функция Arrhythmia (Аритмия)	13
Проверки ЭКГ	14
Настройка выходного сигнала деятельности	14
Проверка обнаружения зубца R	14
Функция артериального давления	15
Настройка чувствительности АД	15
Настройка канала АД	15
Динамические сигналы АД	15
Добавление респираторного артефакта к сигналу АД	17
Сердечный выброс	17
Настройка теста сердечного выброса	17

Моделирование отказа подачи вводимого раствора и неисправности	
шунта слева направо	19
Моделирование выхода калиброванного импульсного сигнала	19
Функция Fetal/Maternal (Плод/мать)	21
Моделирование постоянной частоты сердечных сокращений плода (FHR)	21
Моделирование периодической FHR с внутриматочным давлением (IUP)	21
Другие функции	24
Функции «Respiration» (Дыхание)	24
Температура	24
Дистанционное управление	26
Дистанционные команды	27
Общие команды	28
Команды функций	28
Функции ЕСС (ЭКГ)	28
Функции аритмии	31
Функции проверки ЭКГ	33
Команды функции дыхания	36
Команды функции артериального давления	36
Команды других функций	40
Обстуживание	41
Общее техническое обспуживание	41
Замена батарей	42
Общие характеристики	43
Подробные характеристики	43
Форма сигнала ЭКГ	43
Сигная карпиостимулятора	10
Он нал кардиостимулятора	11
Дритмия Тостирование сиснавов водтовнисти на ЭКГ	44
Пертирование сигналов деятельности на ОКГ	45
Дыхание	40
Артериальное давление	40
Температура	47
Сердечный выорос (только Prosim 3)	4/
Экі плода/матери (только ProSim 3)	48
Настроика компьютера	48

Список таблиц

Таблица

Название

Страница

Символы	3
Стандартные принадлежности	4
Дополнительные принадлежности	4
Элементы управления и разъемы на передней панели	6
Разъемы на верхней панели	7
Функции прибора	9
Динамические сигналы АД для каналов АД	16
Коды ошибок	27
Состояния управления и режимы прибора	28
Общие команды	28
Команды функции ЭКГ	29
Команды сигналов кардиостимулятора	31
Команды функции аритмии	32
Команды проверки ЭКГ	33
Команды функции дыхания	36
Команды функции артериального давления	37
Команды других функций	40
	Символы

Список рисунков

Рисунке

Название

Страница

1.	Элементы управления и разъемы на передней панели	5
2.	Разъемы на верхней панели	7
3.	Подключение сетевого адаптера	8
4.	Экран включения питания	8
5.	Начальный экран	9
6.	Начальный экран — Функция сердечного выброса	9
7.	Экран	10
8.	Экран ЕСС (ЭКГ)	11
9.	Соединения для проверки ЭКГ	12
10.	Экран	13
11.	Адаптер CI-3 вводимого раствора для сердечного выброса	18
12.	Разъемы для сердечного выброса	20
13.	Разъемы	23
14.	Разъемы моделирования температуры	25
15.	Подключения для дистанционного управления	26
16.	Замена батареи	42

Введение

▲ Предупреждение Во избежание поражения электрическим током, возгорания или получения травмы, перед использованием прибора ознакомьтесь со всеми правилами техники безопасности.

Моделирующие устройства жизненно важных функций Prosim[™]2 и Prosim[™]3 (Приборы) представляют собой электронные источники сигнала, используемые для измерения характеристик мониторов пациента. Прибор моделирует следующее:

- ЭКГ (с аритмией и без)
- Дыхание
- Артериальное давление
- Температура
- Сердечный выброс (только Prosim 3)
- ЭКГ и IUP (внутриматочное давление) плода/матери (только Prosim 3)

На всех иллюстрациях показан прибор Prosim™3.

Меры безопасности

Предупреждение обозначает условия и действия, которые опасны для пользователя.

Предостережение обозначает условия и действия, которые могут привести к повреждению Прибора или проверяемого оборудования.

В таблице 1 приведен список символов, используемых на Приборе и в этом руководстве.

<u>∧</u>∧ Предупреждение

Во избежание поражения электрическим током, возникновения пожара или травм следуйте данным инструкциям:

 Используйте данный Прибор только по назначению. Ненадлежащая эксплуатация может привести к нарушению степени защиты, обеспечиваемой Прибором.

- Не подключайте Прибор к пациенту или оборудованию, закрепленному на пациенте. Прибор предназначен только для анализа оборудования. Не используйте Прибор для диагностики, лечения или иного применения, при котором Прибор может касаться пациента.
- Извлекайте батареи, если Прибор не используется в течение длительного периода времени или хранится при температуре выше 50 °С. Если батареи не извлечены, утечка из них может вызвать повреждение Прибора.
- Если загорелся индикатор низкого заряда батарей, необходимо заменить батареи. Это позволит избежать ошибок в измерениях.
- Внимательно прочитайте все инструкции.
- Не используйте прибор в среде взрывоопасного газа, пара или во влажной среде.
- Не используйте Прибор и отключите его, если он поврежден.
- Не используйте Прибор, если в его работе возникли неполадки.

- Осмотрите корпус перед использованием прибора. Обратите внимание на возможные трещины или сколы на пластмассовом корпусе. Внимательно осмотрите изоляцию клемм.
- Перед использованием Прибора прочитайте все правила техники безопасности.
- Прежде чем открывать крышку батарейного отсека, отсоедините все щупы, измерительные провода и принадлежности.
- Извлеките все датчики, испытательные провода и дополнительные принадлежности, которые не нужны для измерения.
- Элементы питания содержат опасные химические вещества, которые могут привести к ожогам. При попадании химических веществ на кожу промойте ее водой и обратитесь за медицинской помощью.

Символ	Описание	Символ	Описание
Δ	Важная информация. См. руководство.		Опасное напряжение
CE	Соответствует директивам ЕС.	c∰ ®	Соответствует действующим в Северной Америке стандартам безопасности.
C N10140	Соответствует действующим в Австралии требованиям по электромагнитной совместимости.	a	Батарея
K	Соответствует действующим в Южной Корее стандартам по электромагнитной совместимости (ЕМС)	X	Данный прибор соответствует требованиям к маркировке директивы WEEE (2002/96/EC). Данная метка указывает, что данный электрический/электронный прибор нельзя выбрасывать вместе с бытовыми отходами. Категория прибора: Согласно типам оборудования, перечисленным в Дополнении I директивы WEEE, данное устройство имеет категорию 9 "Контрольно измерительная аппаратура". Не утилизируйте данный прибор вместе с неотсортированными бытовыми отходами. Указания по утилизации можно найти на веб-сайте компании Fluke.

Таблица 1. Символы

Принадлежности

Доступные принадлежности для Прибора перечислены в таблицах 2 и 3.

Таблица 2.	Стандартные принадлежности
------------	----------------------------

Элемент	Биомедицинская продукция Fluke, деталь №
Информация о мерах безопасности ProSim 2/3	4308669
Компакт-диск с руководством пользователя ProSim 2/3	4253822
Кабель IBP, без концевого коннектора	2392173
Футляр для переноски ProSim 2/3	2248623
Кабель в сборе CI-3 (Блок сердечного выброса), 3010-0289FG	2392199
USB-кабель Mini-B	1671807

Таблица 3. Дополнительные принадлежности

Элемент		Биомедицинская продукция Fluke, деталь №
Kabadi Tangapatiya I	Серия YSI 400 (UT-4)	2523334
Карель температуры	YSI 700 (UT-2)	2199019
Marq Eagle, сердечный выброс (Пе	реключатель сердечного выброса для GE)	4022300
Комплект источника питания пер.,	пост. тока	4318692

Знакомство с Прибором

В таблице 4 перечислены элементы управления и разъемы на Приборе, показанные на рисунке 1.

Рис. 1. Элементы управления и разъемы на передней панели

Элемент	Наименование	Описание
1	Дисплей	ЖК-дисплей
2	Кнопки навигации	Кнопки управления курсором для навигации по меню и спискам.
3	Кнопка Enter	Включает выделенную функцию.
(4)	Кнопка питания	Включение и выключение Прибора.
5	Разъем питания постоянного тока	Разъем для источника питания пер./пост. тока.
6	Разъем для сердечного выброса	Разъем для входа сердечного выброса монитора пациента.
7	Разъемы для инвазивного артериального давления	Четыре разъема для входа инвазивного артериального давления (IBP) монитора пациента.
8	Разъем температуры	Разъем для входа температуры монитора пациента.

Таблица 4. Элементы управления и разъемы на передней панели

В таблице 5 представлен список разъемов на верхней панели Прибора, которая показана на рисунке 2.

Таблица 5. Разъемы на верхней панели

Элемент	Наименование	Описание
1	Клеммы для ЭКГ	Подключение клемм проводов ЭКГ от монитора пациента.
2	Мини-разъем серии В	Для обновления прошивки и калибровки.

Сетевой адаптер

Прибор может работать от двух 9-вольтовых батарей или от сети электропитания. Для подключения к сети электропитания подключите Прибор к дополнительному источнику питания пер./пост. тока, как показано на рисунке 3.

Рис. 3. Подключение сетевого адаптера

Включение Прибора

Для включения Прибора нажмите () на передней панели. На дисплее появляется экран включения питания (рисунке 4).

Рис. 4. Экран включения питания

После окончания самопроверки и при отсутствии ошибок на дисплее появится начальный экран (Рисунок 5).

Рис. 5. Начальный экран

Эксплуатация

Все функции Прибора показаны на начальном экране. См. рисунке 5. Чтобы установить параметры функции, нажимайте кнопки навигации (④, ₺, ඁ), ඁ),) для перемещения выделения на значок функции. Нажмите **ENTER**. В таблице 6 представлен список функций Прибора, показанных на начальном экране.

	Таблица 6. Функции Прибора		
ЗНАЧОК	Описание	ЗНАЧОК	Описание
ECG	Форма сигнала ЭКГ	PACE	Кардиостимулятор
RESP	Дыхание	TEMP	Температура
BP	Артериальное давление	СО	Сердечный выброс
ARRY	Аритмия	FE/MA	Плод/мать
PERF	Сигнал деятельности	SETUP	Настройка

Установка параметра функции:

1. Нажимайте на кнопки навигации, чтобы переместить выделение на функцию. На рисунке 6 показан выделенный значок сердечного выброса.

hal005.bmp

Рис. 6. Начальный экран — Функция сердечного выброса

2. Нажмите **ENTER**. На дисплее отображается экран «Сердечный выброс», показанный на рис 7.

Рис. 7. Экран «Сердечный выброс»

- 3. Чтобы установить температуру впрыска, нажмите [⊙], чтобы переместить выделение на значение параметра **INJ Temp** (Температура впрыска).
- 4. Нажмите) или (), чтобы изменить значение для выделенного параметра. Отрегулированное моделированное значение немедленно изменяет выходной сигнал.

Эта процедура используется для настройки значений всех параметров Прибора. Если параметр нельзя изменить, выделение не будет перемещаться на значение этого параметра.

Для перемещения между функциями Прибора используется две процедуры. Если на дисплее не отображается начальный экран, в нижней части дисплея появляются кнопки **Prev** (Предыдущий), **Ноте** (Начало) и **Next** (Следующий). Для перехода на начальный экран переместите выделение на **Home** (Начало) и нажмите **ENTER**. Начальный экран показывает все функции Прибора. См. рисунке 5. Альтернативой начальному экрану является использование кнопок **Prev** (Предыдущий) и **Next** (Следующий). Программное обеспечение позволяет последовательно перемещаться между функциями Прибора. Последовательность функций:

ECG (ЭКГ), Respiration (Дыхание), Blood Pressure (Артериальное давление), Arrhythmias (Аритмия), Performance Wave (Сигнал деятельности), Pacemaker Wave (Сигнал кардиостимулятора), Temperature (Температура), Cardiac Output (Сердечный выброс), Fetal Maternal (Плод/мать) и Setup (Настройка).

Например, посмотрите на экран сердечного выброса, показанный на рисунке . Если переместить курсор на **Prev** (Предыдущий) и нажать **ENTER**, на дисплее отображается экран «Temperature» (Температура). При выделении **Next** (Следующий) и нажатии **ENTER** на экране «Cardiac Output» (Сердечный выброс) на дисплее отображается экран «Fetal/Maternal» (Плод/мать).

Функции, связанные с деятельностью сердца

Функции Прибора, связанные с деятельностью сердца: ECG (ЭКГ), Arrhythmias (Аритмия), Blood Pressure (Артериальное давление), Pacemaker (Кардиостимулятор), Cardiac Output (Сердечный выброс) и Performance Wave (Сигнал деятельности).

Функции ЕСС (ЭКГ)

Функция ЭКГ Прибора позволяет настроить пять параметров сигнала ЭКГ: Rate (Ритм), Amplitude (Амплитуда), Patient Type (Тип пациента), ST (Сегмент ST) и Artifact (Артефакт). На рисунке 9 показана типичная настройка для проверки ЭКГ на мониторе пациента.

Установка параметра ЭКГ:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы установить выделение на **ECG**.
- 2. Нажмите **ENTER**, чтобы вывести на дисплей экран ЭКГ, показанный на рисунке 8.

ECG Rate: 80 bpm	
Ampl: 1.00 mv	
PT Type: Adult	
ST: 0.00 mv	
Artf: Off	
Prev Home	Next

Рис. 8. Экран ЕСС (ЭКГ)

Порядок настройки значений параметров см. в разделе «Навигация по функциям и выбор параметров».

Диапазон значений параметров см. в подробных технических характеристиках. Эти параметры изменяют сигнал, который появляется на клеммах ЭКГ в верхней части Прибора.

Рис. 9. Соединения для проверки ЭКГ

Сигналы кардиостимулятора

Прибор может моделировать сигналы сердца вместе с управляющими сигналами кардиостимулятора. Для настройки формы, амплитуды и ширины сигнала кардиостимулятора:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы выделить **PACE**.
- 2. Нажмите **ENTER**, чтобы отобразить на дисплее экран **Pacemaker Waves** (Сигналы кардиостимулятора).
- Чтобы задать параметры сигнала кардиостимулятора, используйте процедуру выбора параметров, описанную в разделе «Эксплуатация».

Диапазон значений параметров см. в подробных технических характеристиках.

Функция Arrhythmia (Аритмия)

Прибор может моделировать сердечные аритмии. Для запуска моделирования аритмии ЭКГ:

- 1. На экране **Home** (Начало) нажимайте кнопки навигации, чтобы выделить **ARRY**.
- 2. Нажмите **ENTER**, чтобы отобразить на дисплее экран **Arrhythmias** (Аритмия). См. рисунке 10.

Рис. 10. Экран «Arrhythmia» (Аритмия)

Виды моделируемой аритмии сгруппированы по четырем категориям:

Supraventricular (Суправентрикулярная), Premature (Преждевременная), Ventricular (Желудочковая) и Conduction Defect (Нарушение проводимости). Подробнее об аритмии каждой группы можно узнать в характеристиках.

- 3. Нажмите () или (), чтобы переместить выделение на значок группы аритмии.
- 4. Нажмите ептег.
- Для настройки аритмии используйте процедуру выбора параметров, описанную в разделе «Эксплуатация».

Если параметр типа установлен на аритмию, вокруг значка группы, к которой относится аритмия, появляется утолщенная граница. Для остановки моделирования аритмии:

- 1. Выделите один из значков в группе.
- 2. Нажмите ентег.
- 3. Нажимайте) или () до тех пор, пока в поле значения типа не появится **Off** (Выкл).

Проверки ЭКГ

Прибор может выдавать сигналы импульсов, квадратной, треугольной и синусоидальной формы, которые можно использовать для проверки мониторов пациента и другого оборудования для ЭКГ. Эти сигналы используются при тестировании частотного диапазона, чувствительности, изменения коэффициента усиления, внутренней калибровки, демпфирования стилуса, скорости бумаги, линейности, скорости развертки и многого другого.

Прибор также может выдавать зубцы R, которые используются для проверки способности оборудования ЭКГ обнаруживать часть зубцов R в сигнале ЭКГ.

Примечание

Если Прибор настроен в качестве источника сигнала деятельности, моделирование дыхания и артериального давления отключено.

Настройка выходного сигнала деятельности

Чтобы настроить сигнал деятельности на клеммах ЭКГ:

1. На экране **Home** (Начало) нажимайте кнопки навигации, чтобы выделить PERF.

- 2. Нажмите ENTER, чтобы отобразить на дисплее экран «Performance Wave» (Сигнал деятельности).
- Используйте процедуру выбора параметров, описанную в разделе «Эксплуатация», чтобы задать частоту, форму и амплитуду сигнала деятельности.

Диапазон значений параметров см. в подробных технических характеристиках.

Проверка обнаружения зубца R

Прибор можно настроить в качестве источника нормального сигнала ЭКГ сердца и изменить амплитуду и ширину части сигнала для зубца R. Чтобы задать часть зубца R в сигнале ЭКГ:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы выделить PERF.
- 2. Нажмите **ENTER**, чтобы отобразить на дисплее экран **Performance Wave** (Сигнал деятельности).
- 3. Нажимайте на кнопки навигации, чтобы выделить <u>RWDET</u>.
- 4. Нажмите ENTER, чтобы отобразить на дисплее экран R-Wave Detection (Обнаружение зубца R).
- Используйте процедуру выбора параметров, описанную в разделе «Эксплуатация», чтобы задать число ударов в минуту, ширину и амплитуду зубца R.

Функция артериального давления

Прибор позволяет моделировать сигналы динамического артериального давления (АД), которые синхронизированы со всеми нормальными синусовыми ритмами, а также отслеживать все смоделированные аритмии. Каждый из четырех каналов АД можно настроить по отдельности. Каждый канал моделирует мост датчика давления. В каждый сигнал канала АД можно ввести респираторный артефакт.

Настройка чувствительности АД

Чувствительность четырех каналов АД должна быть настроена в соответствии с чувствительностью монитора пациента. Чтобы настроить чувствительность канала АД:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы выделить SETUP.
- 2. Нажмите **ENTER**, чтобы отобразить на дисплее экран **Setup** (Настройка).
- Используйте процедуру выбора параметров, описанную в разделе «Эксплуатация» для настройки параметра **BP Sense** (Чувствительность АД).

Настройка канала АД

Чтобы настроить один из четырех каналов АД:

- 1. На экране **Home** (Начало) нажимайте кнопки навигации, чтобы выделить ВР.
- 2. Нажмите ENTER, чтобы отобразить на дисплее экран Blood Pressure (Артериальное давление).
- 3. Нажмите [©] или [©], чтобы выделить канал АД, который вы хотите настроить.
- 4. Нажмите **ENTER**, чтобы отобразить на дисплее экран **Blood Pressure** (Артериальное давление) для канала.

- 5. Перед тем как начать моделирование АД, необходимо установить моделируемое давление равным 0 мм рт. ст. Нажимайте на кнопки навигации, чтобы выделить [ZERO].
- 6. Нажмите ENTER. Параметр статического давления устанавливается равным 0 мм рт.ст., а динамические переменные и переменные артефактов устанавливаются на значение Off (Откл).
- 7. Обнулите монитор пациента, чтобы установить исходный уровень для будущего моделирования.
- Используйте процедуру выбора параметров, описанную в разделе «Эксплуатация», для настройки параметров канала «Blood Pressure» (Артериальное давление).

Динамические сигналы АД

Динамический параметр используется для моделирования различных давлений, характерных для деятельности сердца и связанных кровеносных сосудов. Динамические сигналы имеют нормальный синусовый ритм 80 ударов в минуту. Для каждого динамического сигнала меняется только систолическое и диастолическое давление.

Некоторые динамические сигналы могут быть недоступны на всех четырех каналах АД. В таблице 7 представлен список динамических сигналов АД с отметкой, которая указывает, для какого канала АД может быть настроен каждый сигнал.

Примечание

См. раздел «Процедура Свана-Ганза», чтобы уточнить порядок выполнения этого последовательного моделирования.

Динамический сигнал		BD1	882		554	
Наименование	Давление	BPI	BPZ	BP3	ВР	4
Артерия	120/80		\checkmark	\checkmark		
Лучевая артерия	120/80		\checkmark	\checkmark		
Левый желудочек	120/00		\checkmark	\checkmark		
Левое предсердие	14/4		\checkmark	\checkmark		
Правое предсердие	15/10		\checkmark	\checkmark		0 5
Правый желудочек	25/00		\checkmark	\checkmark		анза
Легочная артерия	25/10		\checkmark	\checkmark		лоце На-Г
Заклинивание легочной артерии	10/2			\checkmark	\checkmark	В П Сва

Таблица 7. Динамические сигналы АД для каналов АД

Добавление респираторного артефакта к сигналу АД

Если динамический параметр для канала артериального давления установлен равным значению, отличному от Off (Выкл.), то Прибор позволит переместить выделение на параметр артефактов. После установки выделения на значении артефакта нажмите или , чтобы переключить значение между включением и выключением. Каждый канал АД имеет разный диапазон изменения

давления под действием респираторного артефакта.

Сердечный выброс

Функция «Cardiac Output» (Сердечный выброс) используется для электронного моделирования динамических изменений температуры крови, которая охлаждается вводимым раствором.

Примечание

Измерительные приборы для сердечного выброса, использующие метод впрыска красителя Фика, доплеровскую ультрасонографию и биоимпеданс, не применяются с этим Прибором и не предназначены для него.

Настройка теста сердечного выброса

Чтобы смоделировать сердечный выброс с помощью Прибора, необходимо использовать адаптер СІ-3 для подключения монитора к Прибору. Адаптер показан на рисунке 11. Обратите внимание, что термистор температуры вводимого раствора на кабеле проверяемого устройства должен быть отрезан, чтобы установить универсальный разъем. Этот модуль имеет соединения для измерения сердечного выброса при испытании и моделирует термисторы температуры вводимого раствора (IT) при 0 °С или 24 °С. Из двух разъемов на модуле/кабеле СІ-3 меньший 3-контактный разъем предназначен для температуры крови катетера (BT) и является стандартным для большинства мониторов.

Примечание

Этот 3-контактный разъем катетера ВТ совместим со стандартным катетером Baxter (Edwards) ВТ и эквивалентными катетерами, поставляемыми другими производителями, такими как Viggo-SpectraMed и Abbott (Sorenson).

4-контактный разъем большего размера подает смоделированный сигнал температуры вводимого раствора. 10-витковый потенциометр на 100 kΩ позволяет устанавливать температуру вводимого раствора равной 0 °С или 24 °С.

4-контактный разъем термисторов IT не является стандартным для всех мониторов. Также доступен универсальный разъем, который можно подключить к кабелю вводимого раствора проверяемого устройства (DUT).

Примечание

Кабель сердечного выброса проверяемого устройства, модифицированный для проведения этой проверки, не должен применяться в клинической практике.

Рис. 11. Адаптер СІ-З вводимого раствора для сердечного выброса

Для моделирования сердечного выброса используйте прилагаемый адаптер СІ-3, чтобы подключить Прибор к проверяемому устройству (DUT). (См. рисунке 12). Если необходимо, используйте универсальный разъем. Для выполнения проверки сердечного выброса:

- 1. Подключите монитор пациента к адаптеру сердечного выброса.
- 2. Подключите адаптер к Прибору (рисунке 12).

- 3. Настройте монитор пациента в соответствии со следующими параметрами:
 - Размер катетера: 7 F
 - Объем вводимого раствора: 10 куб. см.
 - Температура вводимого раствора: 0 °С или 24 °С
 - Вычисленная постоянная: 0,542 для вводимого раствора с температурой 0 °С или 0,595 для вводимого раствора с температурой 24 °С
- 4. На экране **Home** (Начало) Прибора нажимайте кнопки навигации, чтобы выделить <u>CO</u>.
- 5. Нажмите **ENTER**, чтобы отобразить экран сердечного выброса.
- Используйте процедуру выбора параметров, чтобы настроить параметры сердечного выброса для проверки. Диапазон каждого параметра см. в подробных спецификациях.
- 7. Нажимайте на кнопки навигации, чтобы выделить <u>START</u>
- 8. Нажмите **ENTER**, чтобы начать проверку. Моделирование автоматически останавливается.

Чтобы остановить моделирование, выделите **STOP** и нажмите **ENTER**.

Моделирование отказа подачи вводимого раствора и неисправности шунта слева направо

Функция «Cardiac Output» (Сердечный выброс) позволяет моделировать отказ подачи вводимого

раствора или неисправность шунта слева направо. Чтобы настроить любой из этих двух отказов:

- 1. Нажмите или , чтобы выбрать значение **Wave** (Сигнал).
- 2. Нажимайте () или () до тех пор, пока на дисплее не появится FAULTY INJ (Отказ подачи вводимого раствора) или L to R SHUNT (Неисправность шунта слева направо).
- 3. Нажимайте на кнопки навигации, чтобы выделить <u>START</u>
- 4. Нажмите ЕЛТЕВ, чтобы начать проверку.

Моделирование выхода калиброванного импульсного сигнала

Прибор выдает сигнал, который моделирует температуру вводимого раствора в диапазоне от 0 °С до 24 °С с шагом 1,5 °С в течение 1 секунды, позволяя протестировать монитор сердечного выброса. Для вывода импульса калибровки:

- 2. Нажимайте () или (), пока на дисплее не появится **CAL PULSE** (Импульс калибровки).
- 3. Нажмите 👁 или 🗢, чтобы выделить 🖾
- 4. Нажмите ENTER, чтобы начать проверку.

Рис. 12. Разъемы для сердечного выброса

Функция Fetal/Maternal (Плод/мать)

Прибор может моделировать электрокардиограммы (ЭКГ) матери и плода, которые наблюдаются во время родов. Также можно смоделировать сигналы давления маточных сокращений.

Сигнал ЭКГ плода/матери поступает на клеммы ЭКГ Прибора. Материнский сигнал представляет собой сигнал P-QRS-T, установленный равным 80 ударов в минуту с амплитудой, равной половине значения параметра амплитуды. Сигналом плода является узкий зубец R с полной амплитудой. Сигналы матери и плода объединяются, чтобы образовать композитный сигнал.

Моделирование постоянной частоты сердечных сокращений плода (FHR)

Чтобы настроить фиксированную частоту сердечных сокращений плода:

- 1. На экране **Ноте** (Начало) Прибора нажимайте кнопки навигации, чтобы выделить **FE/MA**.
- 2. Нажмите **ENTER**, чтобы отобразить экран **Fetal Maternal** (Плод/мать).
- 3. Используйте процедуру выбора параметров, чтобы выбрать параметр **FHR**.

Установленное значение, отображаемое на дисплее, выводится на экран и остается на выходе до тех пор, пока значение не изменяется.

Моделирование периодической FHR с внутриматочным давлением (IUP)

Прибор может моделировать внутриматочное давление (IUP) сокращения матки во время родов. Сигнал IUP представляет собой колоколообразную кривую,

которая начинается с нуля, увеличивается до 90 мм рт.ст. и уменьшается до нуля в течение 90-секундного периода. Частота сокращений может быть установлена вручную, равной 2, 3 или 5 минутам.

Частота сердечных сокращений плода начинается со 140 ударов в минуту и изменяется вместе с артериальным давлением. Частота сердечных сокращений плода и IUP показаны на дисплее.

Прибор моделирует три предустановленных сигнала для периодической FHR:

Early deceleration (Брадикардия в начале сокращения матки) — Частота сердечных сокращений плода изменяется вместе с внутриматочным давлением (без задержки). FHR начинается со 140 ударов в минуту, замедляется до 100 ударов в минуту при внутриматочном пиковом давлении, а затем возвращается к 140 ударам в минуту, когда IUP снова уменьшается до нуля.

Late deceleration (Брадикардия на высоте сокращения матки) — Изменение частоты сердечных сокращений плода начинается в тот момент, когда IUP находится на пике и отстает от изменений внутриматочного давления на 45 секунд. FHR начинается со 140 ударов в минуту, замедляется до 100 ударов в минуту, а затем снова увеличивается до 140 ударов в минуту.

Acceleration (Учащение) — Частота сердечных сокращений плода отстает от изменения внутриматочного давления на 30 секунд. FHR начинается со 140 ударов в минуту, увеличивается до 175 ударов в минуту, а затем снова уменьшается до 140 ударов в минуту. Чтобы установить периодическую FHR с IUP:

- Если на дисплее показан экран «Fetal/Maternal» (Плод/мать), перейдите к шагу 3. В противном случае перейдите к экрану Прибора **Ноте** (Начало) и нажмите кнопки навигации, чтобы выделить <u>FE/MA</u>.
- 2. Нажмите **ENTER**, чтобы отобразить экран **Fetal Maternal** (Плод/мать).
- 3. Используйте процедуру выбора параметров для установки параметров FHR, IUP и Period (Период).
- 4. Нажимайте на кнопки навигации, чтобы выделить <u>START</u>.
- 5. Нажмите ENTER, чтобы начать проверку. Если параметр Period (Период) установлен на значение

Manual (Ручной), моделирование автоматически останавливается после прекращения сигнала IUP. При каждом нажатии **ENTER** запускается другой сигнал IUP. Если параметр не установлен на значение «Manual» (Ручной), волна IUP повторяется с частотой, заданной в поле **Period** (Период) до прекращения моделирования.

Чтобы остановить моделирование, выделите **STOP** и нажмите **ENTER**.

Рис. 13. Разъемы «Fetal/Maternal» (Плод/мать)

Другие функции

Прибор также может моделировать дыхание и температуру. В данном разделе описаны процедуры настройки этих двух функций Прибора.

Функции «Respiration» (Дыхание)

Функция «Respiration» (Дыхание) позволяет настроить пять параметров сигнала дыхания: Rate (Ритм), Impedance (Импеданс), Baseline Impedance (Импеданс исходного уровня), Lead selection (Выбор канала) (левая рука или левая нога) и Apnea (Апноэ). Чтобы настроить сигнал дыхания:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы установить выделение на RESP.
- 2. Нажмите ENTER, чтобы отобразить на дисплее экран «Respiration» (Дыхание).

Порядок настройки значений параметров дыхания см. в разделе «Навигация по функциям и выбор параметров». Диапазон значений параметров см. в подробных технических характеристиках. Эти параметры изменяют сигнал, который появляется на клеммах ЭКГ в верхней части Прибора.

Если параметр «Арпеа» (Апноэ) установлен равным 12, 22 или 32, событие апноэ начинается немедленно. По окончании события параметр устанавливается на значение Off (Выкл). Необходимо установить параметр равным 12, 22 или 32, чтобы начать другое событие апноэ.

Значения, установленные для параметров исходного уровня и каналов, когда Прибор выключен, становятся значениями по умолчанию при включении питания.

Температура

Температуры, смоделированные Прибором, совместимы с щупами Yellow Springs, Inc. (YSI) серий 400 и 700. Тип кабеля, подключенного к гнезду температуры, задает тип моделируемого щупа температуры. Подсоедините вход температуры проверяемого оборудования к гнезду температуры, как показано на рисунке 14.

Чтобы установить температуру:

- 1. На экране **Ноте** (Начало) нажимайте кнопки навигации, чтобы установить выделение на <u>темр</u>.
- 2. Нажмите **ENTER**, чтобы отобразить на дисплее экран температуры.

Порядок настройки значений параметров температуры см. в разделе «Навигация по функциям и выбор параметров». Диапазон значений параметров см. в подробных технических характеристиках. Эти параметры изменяют сигнал температуры на разъеме температуры.

Рис. 14. Разъемы моделирования температуры

Дистанционное управление

Прибор оснащен портом устройства USB, который позволяет удаленно управлять Прибором с помощью набора команд. Чтобы управлять Прибором с ПК, подключите устройство USB к USB-порту на ПК. Для

управления Прибором на ПК должна быть установлена система Windows XP, Vista или Windows 7 или более поздняя версия операционной системы.

Чтобы начать управление Прибором с ПК, подключите его к ПК, как показано на рисунке 15.

Рис. 15. Подключения для дистанционного управления

При подключении к ПК с операционной системой Windows Прибор будет обмениваться данными через порт РС СОМ. Убедитесь, что для СОМ-порта установлены следующие параметры:

- 9600 бод
- Без контроля четности
- 8 бит данных
- 1 стоп-бит
- Аппаратное квитирование выключено

Дистанционные команды

Дистанционная команда состоит из буквенно-цифровых символов. Первый символ команды должен быть буквой. Буквенные символы могут быть в верхнем или нижнем регистре.

- Специальные символы:
- Возврат каретки (CR)
- Перевод строки (LF)
- Пробел (SP)
- Забой (BS)
- Отмена (ESC)

Прибор выдает команду, когда получает символ возврата каретки и/или перевода строки. Буквенные символы не чувствительны к регистру. При вводе команды клавиша Backspace удаляет последний записанный символ, а клавиша Escape отменяет всю команду. После завершения команды Прибор отправляет на ПК ответ, который заканчивается возвратом каретки и переводом строки. Если Прибор не передает назад другие данные, то ответом будет «ОК» в случае принятии команды Прибором. Если команда не принята Прибором, на ПК передается код ошибки, показанный в таблице 8.

Таблица 🕯	В. K	оды	оши	бок
-----------	------	-----	-----	-----

Код ошибки	Описание
ERR=00	Передача команд в это время не разрешена
ERR=01	Неизвестная команда
ERR=02	Недопустимая команда
ERR=03	Недопустимый параметр
ERR=04	Поврежденные данные
ERR=05	Неизвестная ошибка
ERR=06	Опция не установлена
ERR=07	Неверный пароль

Если Прибор управляется с передней панели (локальный режим), удаленный интерфейс не будет реагировать на команды до тех пор, пока на Прибор не будет передана команда REMOTE (Дистанционное управление) через порт USB.

Общие команды

В таблице 9 представлен список режимов и их описание.

Таблица 9. Состояния управления и режимы прибора

Режим	Тип	Описание
LOCAL	Локальный	Локальное управление
RMAIN	Основной	Основное дистанционное управление
DIAG	Суб	Дистанционный субрежим диагностических тестов
CAL	Суб	Дистанционный субрежим калибровки

Таблица 10 содержит список общих команд, задающих состояния управления и режимы работы Прибора. В таблице показано, в каком режиме распознается команда, и ответ, который Прибор отправит на ПК после завершения команды.

Таблица 10. Общие команды

Команда	Допустимый режим	Возвращает	Описание
REMOTE	LOCAL	RMAIN	Переход к дистанционному управлению
LOCAL	RMAIN	LOCAL	Переход к локальному управлению
QMODE	Все режимы	См. таблицу 10	Запрос режима

Команды функций

Команды функций сгруппированы по функциям, которые они поддерживают.

Функции ЕСС (ЭКГ)

В таблицах 11 и 12 перечислены списки команд, которые управляют функциями ЭКГ Прибора. К ним относятся нормальная синусовая ЭКГ, амплитуда ЭКГ, режим «взрослый/ребенок», высота сегмента ST, моделирование артефакта ЭКГ, сигнал кардиостимулятора, амплитуда кардиостимулятора и ширина кардиостимулятора.

Таблица 11. Команды функции ЭКГ

Действие	Команда	
Нормальный синус		
30 ударов в минуту	NSR30	
40 ударов в минуту	NSR40	
45 ударов в минуту	NSR45	
60 ударов в минуту	NSR60	
80 ударов в минуту	NSR80	
90 ударов в минуту	NSR90	
100 ударов в минуту	NSR100	
120 ударов в минуту	NSR120	
140 ударов в минуту	NSR140	
160 ударов в минуту	NSR160	
180 ударов в минуту	NSR180	
200 ударов в минуту	NSR200	
220 ударов в минуту	NSR220	
240 ударов в минуту	NSR240	
260 ударов в минуту	NSR260	
280 ударов в минуту	NSR280	
300 ударов в минуту	NSR300	

Таблица 11. Команды функции ЭКГ (прод.)

Действие	Команда	
Амплитуда [1]		
0,05 мВ	NAS0.05	
0,10 мВ	NAS0.10	
0,15 мВ	NAS0.15	
0,20 мВ	NAS0.20	
0,25 мВ	NAS0.25	
0,30 мВ	NAS0.30	
0,35 мВ	NAS0.35	
0,40 мВ	NAS0.40	
0,45 мВ	NAS0.45	
0,50 мВ	NAS0.50	
1,00 мВ	NAS1.00	
1,50 мВ	NAS1.50	
2,00 мВ	NAS2.00	
2,50 мВ	NAS2.50	
3,00 мВ	NAS3.00	
3,50 мВ	NAS3.50	
4,00 мВ	NAS4.00	

Таблица 11. Команды функции ЭКГ (прод.)

Действие	Команда	
Амплитуда ^[1] (блок)		
4,50 мВ	NAS4.50	
5,00 мВ	NAS5.00	
5,50 мВ	NAS5.50	
Взрослый/ребенок [1]		
Взрослый	ВЗРОСЛЫЙ	
Ребенок	PEDS	
Повышение ST-сегмента	a ^[1]	
-0,8 мВ	STD-0.8	
-0,7 мВ	STD-0.7	
-0,6 мВ	STD-0.6	
-0,5 мВ	STD-0.5	
-0,4 мВ	STD-0.4	
-0,3 мВ	STD-0.3	
-0,2 мВ	STD-0.2	
-0,1 мВ	STD-0.1	
-0,05 мВ	STD-0.05	
0 мВ	STD0	

Таблица 11. Команды функции ЭКГ (прод.)

Действие	Команда	
Повышение ST-сегмента ^[1] (блок)		
0,05 мВ	STD+0.05	
+0,1 мВ	STD+0.1	
+0,2 мВ	STD+0.2	
+0,3 мВ	STD+0.3	
+0,4 мВ	STD+0.4	
+0,5 мВ	STD+0.5	
+0,6 мВ	STD+0.6	
+0,7 мВ	STD+0.7	
+0,8 мВ	STD+0.8	
Моделирование артефакта [1]		
Выкл.	EAOFF	
50 Гц	EA50	
60 Гц	EA60	
Мышца	EAMSC	
Блуждающая	EAWNDR	
Дыхание	EARESP	
 Установите частоту ЭКГ перед настройкой амплитуды, высоты сегмента ST и артефакта. 		

Таблица 12. Команды сигналов кардиостимулятора

Действие	Команда
Сигналы	
Предсердный кардиостимулятор	ATR
Асинхронный кардиостимулятор	ASN
Требование частый синус	DFS
AV последовательно	AVS
Отсутствие захвата	NCA
Отсутствие функции	NFU
Амплитуда [1]	
1 мВ	PA1
2 мВ	PA2
5 мВ	PA5
10 мВ	PA10

Таблица 12. Команды сигналов кардиостимулятора (прод.)

Действие	Команда	
Ширина [1]		
+0,1 мВ	PA0.1	
+0,5 мВ	PA0.5	
1,0 мВ	PA1.0	
1,5 мВ	PA1.5	
2 мВ	PA2.0	
 Настройте сигнал кардиостимулятора перед настройкой амплитуды и ширины. 		

Функции аритмии

В таблице 13 перечислен список команд для моделирования аритмии. Эти сигналы сгруппированы по категориям суправентрикулярной аритмии, преждевременной аритмии, желудочковой аритмии и нарушению проводимости.

Таблица 13. Команды функции аритмии

Действие	Команда	
Суправентрикулярный		
Фибрилляция предсердий, грубая	AF1	
Фибрилляция предсердий, мелкая	AF2	
Трепетание предсердий	AFL	
Синусовая аритмия	SINA	
Пропущенный удар	MB80	
Предсердная тахикардия	ATC	
Пароксизмальная предсердная тахикардия	PAT	
Узловой ритм	NOD	
Суправентрикулярная тахикардия	SVT	
Преждевременный		
Преждевременное сокращение предсердий	PAC	
Преждевременное узловое сокращение	PNC	
Преждевременное вентрикулярное сокращение слева (PVC1), стандартное	PVC1S	
Преждевременное вентрикулярное сокращение слева (PVC1), раннее	PVC1E	
Преждевременное вентрикулярное сокращение слева (PVC1), R на T	PVC1R	

Таблица 13. Команды функции аритмии (прод.)

Действие	Команда		
Преждевременное (прод.)			
Преждевременное вентрикулярное сокращение справа (PVC1), раннее	PVC2S		
Преждевременное вентрикулярное сокращение справа (PVC1), раннее	PVC2E		
Преждевременное вентрикулярное сокращение справа (PVC1), R на T	PVC2R		
Мультифокальные PVC MF			
Желудочковый			
Экстрасистолии, 6 в минуту	PVC6		
Экстрасистолии, 12 в минуту	PVC12		
Экстрасистолии, 24 в минуту	PVC24		
Частотные мультифокальные экстрасистолии	FMF		
Бигеминия	BIG		
Тригеминия	TRG		
Пара экстрасистолий	PAIR		
5 экстрасистолий	RUN5		
11 экстрасистолий	RUN11		

Таблица 13. Команды функции аритмии (прод.)

Действие	Команда	
Желудочковая (прод.)		
Вентрикулярная тахикардия	VTC	
Фибрилляция желудочков, грубая	VFB1	
Фибрилляция желудочков, мелкая	VFB2	
Асистолия	ASY	
Нарушение проводимости		
Блокада первой степени	1DB	
Блокада второй степени 2DB		
Блокада третьей степени	3DB	
Блокада правой ножки предсердно- желудочкового пучка		
Блокада левой ножки предсердно- желудочкового пучка	LBB	

Функции проверки ЭКГ

В таблице 14 представлен список команд функциональной проверки ЭКГ. Эти команды сгруппированы по сигналам деятельности, амплитуде сигналов деятельности, ритму зубцов R, ширине зубцов R и амплитуде зубцов R.

Таблица 14. Команды проверки ЭКГ

Действие	Команда		
Сигналы деятельности			
Прямоугольный сигнал 2 Гц	SQU2		
Прямоугольный сигнал 0,125 Гц	SQU.125		
Треугольный сигнал 2 Гц	TRI2		
Треугольный сигнал 2,5 Гц	TRI2.5		
Пульсовая волна, 30 ударов в минуту	PUL30		
Пульсовая волна, 60 ударов в минуту	PUL60		
Синусоида 0,5 Гц	SIN0.5		
Синусоида 5 Гц	SIN5		
Синусоида 10 Гц	SIN10		
Синусоида 40 Гц	SIN40		
Синусоида 50 Гц	SIN50		
Синусоида 60 Гц SIN60			
Синусоида 100 Гц SIN100			
Амплитуда			
0,05 мВ	PFA0.05		
0,10 мВ	PFA0.10		

Таблица 14. Команды проверки ЭКГ ((прод.)
------------------------------------	---------

Действие	Команда
Амплитуда (прод.)	
0,15 мВ	PFA0.15
0,20 мВ	PFA0.20
0,25 мВ	PFA0.25
0,30 мВ	PFA0.30
0,35 мВ	PFA0.35
0,40 мВ	PFA0.40
0,45 мВ	PFA0.45
0,50 мВ	PFA0.50
1,00 мВ	PFA1.00
1,50 мВ	PFA1.50
2,00 мВ	PFA2.00
2,50 мВ	PFA2.50
3,00 мВ	PFA3.00
3,50 мВ	PFA3.50
4,00 мВ	PFA4.00
4,50 мВ	PFA4.50
5,00 мВ	PFA5.00
5,50 мВ	PFA5.50

Действие	Команда		
Частота зубцов R			
Зубец R при 30 ударах в минуту	RWR30		
Зубец R при 60 ударах в минуту	RWR60		
Зубец R при 80 ударах в минуту	RWR80		
Зубец R при 120 ударах в минуту	RWR120		
Зубец R при 200 ударах в минуту	RWR200		
Зубец R при 250 ударах в минуту	RWR250		
Ширина зубцов R			
Ширина зубцов R при 8 мс	RWW8		
Ширина зубцов R при 10 мс	RWW10		
Ширина зубцов R при 12 мс	RWW12		
Ширина зубцов R при 20 мс	RWW20		
Ширина зубцов R при 30 мс	RWW30		
Ширина зубцов R при 40 мс	RWW40		
Ширина зубцов R при 50 мс	RWW50		
Ширина зубцов R при 60 мс	RWW60		
Ширина зубцов R при 70 мс	RWW70		
Ширина зубцов R при 80 мс	RWW80		

Таблица 14. Команды проверки ЭКГ (прод.)			
Действие	Команда		
Ширина зубцов R (прод.)			
Ширина зубцов R при 90 мс	RWW90		
Ширина зубцов R при 100 мс	RWW100		
Ширина зубцов R при 110 мс	RWW110		
Ширина зубцов R при 120 мс	RWW120		
Ширина зубцов R при 130 мс	RWW130		
Ширина зубцов R при 140 мс	RWW140		
Ширина зубцов R при 150 мс	RWW150		
Ширина зубцов R при 160 мс	RWW160		
Ширина зубцов R при 170 мс	RWW170		
Ширина зубцов R при 180 мс	RWW180		
Ширина зубцов R при 190 мс	RWW190		
Ширина зубцов R при 200 мс	RWW200		
Амплитуда зубцов R			
0,05 мВ	RWA0.05		
0,10 мВ	RWA0.10		
0,15 мВ	RWA0.15		
0,20 мВ	RWA0.20		

Таблица 14. Команды проверки ЭКГ (прод.)

Действие	Команда	
Амплитуда зубцов R (прод.)		
0,25 мВ	RWA0.25	
0,30 мВ	RWA0.30	
0,35 мВ	RWA0.35	
0,40 мВ	RWA0.40	
0,45 мВ	RWA0.45	
0,40 мВ	RWA0.40	
0,50 мВ	RWA0.50	
1,00 мВ	RWA1.00	
1,50 мВ	RWA1.50	
2,00 мВ	RWA2.00	
2,50 мВ	RWA2.50	
3,00 мВ	RWA3.00	
3,50 мВ	RWA3.50	
4,00 мВ	RWA4.00	
4,50 мВ	RWA4.50	
5,00 мВ	RWA5.00	
5,50 мВ	RWA5.50	

Команды функции дыхания

В таблице 15 представлен список команд функции дыхания. Эти команды сгруппированы по каналам дыхания, исходному уровню дыхания (импеданс), частоте дыхания, амплитуде дыхания и моделированию апноэ.

Таблица 15. Команды функции дыхания

Действие	Команда		
Канал			
Канал LA	RLLA		
Канал LL	RLLL		
Исходное состояние			
500 Ω	RB500		
1000 Ω	RB1000		
1500 Ω	RB1500		
2000 Ω	RB2000		
Ритм			
0 вдохов/выдохов в минуту	RR0		
15 вдохов/выдохов в минуту	RR15		
20 вдохов/выдохов в минуту	RR20		
30 вдохов/выдохов в минуту	RR30		
40 вдохов/выдохов в минуту	RR40		

Действие	Команда	
60 вдохов/выдохов в минуту	RR60	
80 вдохов/выдохов в минуту	RR80	
100 вдохов/выдохов в минуту	RR100	
120 вдохов/выдохов в минуту	RR120	
Амплитуда		
0,2 Ω	RO0.5	
0,5 Ω	RO0.5	
1,0 Ω	RO1.0	
3,0 Ω RO3.0		
Моделирование апноэ		
12 секунд	A12	
22 секунды	A22	
32 секунды	A32	
Непрерывно	AON	
Апноэ выкл.	AOFF	

Команды функции артериального давления

В таблице 16 представлен список команд функции артериального давления. Эти команды сгруппированы по статическому давлению, динамическому давлению и респираторному артефакту.

Действие	Команда				
	Канал 1	Канал 2	Канал 3	Канал 4	
Чувствительность АД к 5 µВ/В/мм рт.ст.		I	BPSNS5		
Чувствительность АД к 40 µВ/В/мм рт.ст.		BPSNS40			
Ноль по каждому каналу	P1S0	P2S0	P3S0	P4S0	
Ноли по всем каналам			ZALL	•	
Уровни статического давления					
-5 мм рт.ст. статическое	Не прим.	Не прим.	P3S-5	P4S-5	
-10 мм рт.ст. статическое	P1S-10	P2S-10	Не прим.	Не прим.	
20 мм рт.ст. статическое	Не прим.	Не прим.	P3S20	P4S20	
40 мм рт.ст. статическое	Не прим.	Не прим.	P3S40	P4S40	
50 мм рт.ст. статическое	Не прим.	P2S50	Не прим.	Не прим.	
60 мм рт.ст. статическое	Не прим.	Не прим.	P3S60	P4S60	
80 мм рт.ст. статическое	P1S80	Не прим.	P3S80	P4S80	
100 мм рт.ст. статическое	Не прим.	P2S100	P3S100	P4S100	
150 мм рт.ст. статическое	Не прим.	P2S150	Не прим.	Не прим.	
160 мм рт.ст. статическое	P1S160	Не прим.	Не прим.	Не прим.	
200 мм рт.ст. статическое	Не прим.	P2S200	Не прим.	Не прим.	

Таблица 16. Команды функции артериального давления

n - X	Команда			
Деиствие	Канал 1	Канал 2	Канал З	Канал 4
Уровни статического давлени	ия (прод.)			
240 мм рт.ст. статическое	P1S240	P2S240	Не прим.	Не прим.
320 мм рт.ст. статическое	P1S320	Не прим.	Не прим.	Не прим.
400 мм рт.ст. статическое	P1S400	Не прим.	Не прим.	Не прим.
Динамические сигналы				
Артериальный при 120/80	P1ART	P2ART	P3ART	Не прим.
Радиальный при 120/80	P1RART	P2RART	P3RART	Не прим.
Левый желудочек при 120/0	P1LV	P2LV	P3LV	Не прим.
Правый желудочек при 25/0	P1RV	P2RV	P3RV	P4RV
Легочный при 25/10	Не прим.	P2PA	РЗРА	P4PA
Легочный при 10/2	Не прим.	P2W	P3W	P4W
Левое предсердие при 14/4	Не прим.	P2LA	P3LA	Не прим.
Центральное венозное давление в правом предсердии при 15/10	Не прим.	P2CVP	P3CVP	P4CVP

Таблица 16. Команды функции артериального давления (прод.)

		+/	···· • • • • • • • • • • • •	·····	
Действие		Команда			
		Канал 1	Канал 1	Канал 1	Канал 1
Дина	мические сигналы (прог	1.)			
33	Автозапуск	Не прим.	Не прим.	Не прим.	STSGAUTO
-Ган	Ручной запуск	Не прим.	Не прим.	Не прим.	STSG
зана	Вставка (ручная)	Не прим.	Не прим.	Не прим.	INS
D D	Расширение (ручное)	Не прим.	Не прим.	Не прим.	INF
тете	Сокращение (ручное)	Не прим.	Не прим.	Не прим.	DEF
Ka	Оттяжка (ручная)	Не прим.	Не прим.	Не прим.	PLBK
Респ	ираторный артефакт				
Артеф	ракт вкл	P1AOFF	P2AOFF	P3AOFF	P4AOFF
Артеф	ракт выкл	P1AON	P2AON	P3AON	P4AON

Таблица 16. Команды функции артериального давления (прод.)

Команды других функций

В таблице 17 представлен список команд для других функций Прибора. К другим функциям относится температура, сигнал сердечного выброса/вводимого раствора, частота сердечных сокращений плода, сигнал внутриматочного давления, период внутриматочного давления и звуковой сигнал.

Таблица 17. Команды других функций

Действие	Команда
Температура	
0 °C	Т0
24 °C	T24
37 °C	T37
40 °C	T40
Сигнал сердечного выброса/вводимого раствора	
2,5 л/мин	COW2.5
5,0 л/мин	COW5.0
10,0 л/мин	COW10.0
Сбой вводимого раствора	COWFLT
Левый/правый шунт	COWLRS
Импульс калибровки	COWCAL
Стоп	COSTOP

Действие	Команда
Вводимый раствор при 0 °С	COI0
Вводимый раствор при 24 °С	COI24
Частота сердечных сокращений плода	
60 ударов в минуту	F60
90 ударов в минуту	F90
120 ударов в минуту	F120
140 ударов в минуту	F140
150 ударов в минуту	F150
210 ударов в минуту	F210
240 ударов в минуту	F240
Внутриматочное давление	<u> </u>
Однократно	IUP1
2-минутный период	IUP2M
3-минутный период	IUP3M
5-минутный период	IUP5M

Обслуживание

<u>∧</u>∧ Предупреждение

Во избежание поражения электрическим током, возникновения пожара или травм следуйте данным инструкциям:

- Ремонт Прибора должен осуществлять только авторизованный техник.
- Используйте только указанные сменные детали.
- Отключайте входные сигналы перед очисткой Прибора.
- Элементы питания содержат опасные химические вещества, которые могут привести к ожогам. При попадании химических веществ на кожу промойте ее водой и обратитесь за медицинской помощью.
- Не помещайте элементы питания и блоки батарей вблизи от источника тепла или огня. Избегайте прямого попадания солнечных лучей.
- Не разбирайте батарею.
- Во избежание повреждений Прибора вследствие протекания батарей перед длительным перерывом в работе извлекайте батареи из Прибора.
- Не соединяйте клеммы батареи друг с другом.

Для безопасного использования и технического обслуживания Прибора следуйте данным инструкциям:

- Храните элементы питания и блоки батарей чистыми и сухими. Очищайте загрязненные клеммы сухой чистой тканью.
- В случае протекания батарей необходимо отремонтировать Прибор перед использованием.
- Чтобы не допустить протекания батарей, убедитесь в их правильной полярности.
- Не храните элементы питания и батареи в контейнерах, где их клеммы могут замкнуться.
- Не разбирайте и не ломайте элементы питания и блоки батарей.

Общее техническое обслуживание

Очищайте корпус влажной тканью с использованием мягкого моющего средства. Не используйте растворитель или абразивные чистящие средства.

▲ Предупреждение

Для безопасного использования и технического обслуживания Прибора следуйте данным инструкциям:

 Избегайте попадания жидкости на поверхность Прибора. Попадание жидкости в электрический контур Прибора может привести к его поломке. Не распыляйте чистящие средства на Прибор. Это может привести к попаданию жидкости внутрь Прибора и вызвать повреждение электронных компонентов.

Замена батарей

<u>∧</u>∧ Предупреждение

Во избежание поражения электрическим током, возникновения пожара или травм следуйте данным инструкциям:

- Во избежание повреждений Прибора вследствие протекания батарей перед длительным перерывом в работе извлекайте батареи из Прибора.
- Чтобы не допустить протекания батарей, убедитесь в их правильной полярности.
- Элементы питания содержат опасные химические вещества, которые могут привести к ожогам. При попадании химических веществ на кожу промойте ее водой и обратитесь за медицинской помощью.

Если заряд батарей становится низким, на дисплее появляется предупреждение. Немедленно замените батареи. Для замены батарей:

- 1. Выключите прибор и извлеките все измерительные провода.
- 2. Сдвиньте крышку батарейного отсека на задней стороне Прибора. См. рисунке 16.
- 3. Извлеките две 9-вольтовые батареи и замените их на новые. Соблюдайте полярность.
- 4. Установите крышку батарейного отсека.

Рис. 16. Замена батарей

Общие характеристики

Питание	Две щелочных батареи 9 В (IEC 6LR61, NEDA 1604А). Дополнительный сетевой адаптер: 15 В пост. тока, 1,5 мА
Время работы от батареи	Минимум 8 часов.
Дисплей	ЖК-дисплей, градации серого
Размер	14,0 x 20,6 x 4,5 см (5,5 x 8,2 x 1,8 дюйма)
Масса	
Температура	
При хранении	от -25 °C до +50 °C (от -13 °F до +122 °F)
Во время работы	от 10 °C до 40 °C (от 50 °F до 104 °F)
Влажность	от 10 % до 80 % (без конденсации)
Высота над уровнем моря	2000 м (6 562 фута)
Безопасность	ІЕС 61010-1, степень загрязнения 2
Электромагнитная обстановка	ІЕС 61326-1, переносной
ЭМС	Относится только к использованию в Корее. Оборудование класса А (промышленное передающее оборудование и оборудование для связи) ^[1] [1] Данный Прибор соответствует требованиям к промышленному (класс А) оборудованию, работающему с электромагнитными волнами, и продавцы и пользователи должны обратить на это внимание. Данное оборудование не предназначено для бытового использования, только для коммерческого

Подробные характеристики

Форма сигнала ЭКГ

Nahaji i	
Канал II	100 %
Канал III	30 %
Канал V1	24 %
Канал V2	48 %
Канал V3	100 %
Канал V4	

Канал V5	. 112 %
Канал V6	. 80 %
Нормальный синусовый ритм	. 12-канальная конфигурация с независимыми выходами, с опорой на сигнал для правой ноги (RL). Выход на 10 универсальных гнезд ЭКГ, цветная кодировка по стандартам АНА и IEC.
Амплитуда	. От 0,05 до 0,45 мВ (с шагом 0,05 мВ), от 0,5 до 5,5 мВ (с шагом 0,5 мВ)
Погрешность амплитуды	. $\pm 2~\%$ от настройки канала II. Все остальные каналы $\pm 5~\%$
Частота ЭКГ	. 30, 40, 45, 60, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 и 300 ударов в минуту
Погрешность частоты	. ±1 % от настройки
Выбор сигнала ЭКГ	. Взрослый (80 мс) или ребенок (40 мс) Продолжительность QRS
Артефакт (Наложение)	. 50 и 60 Гц, мышца, отклонение исходного уровня, дыхание
Подъем сегмента ST	. Только режим для взрослого. От -0,8 до +0,8 мВ (шаг 0,1 мВ) Дополнительные шаги: +0,05 мВ и -0,05 мВ
Включение питания по умолчанию	. 80 ударов в минуту, 1,0 мВ, QRS для взрослого, подъем ST-сегмента 0 мВ, и интервал P-R 0,16 секунды

Сигнал кардиостимулятора

Амплитуда импульса кардиостимулятора	0 (выключен), 1, 2, 5, 10 мВ ±10% для канала II (эталонный канал), другие каналы пропорциональны, как для сигналов деятельности.
Ширина импульса кардиостимулятора	0,1; 0,5; 1,0; 1,5; 2,0 мс ±5 %
Частота стимуляции	75 ударов в минуту
Аритмия с заданным темпом	Предсердная 80 ударов в минуту Асинхронная 75 ударов в минуту Требование с частыми синусовыми ударами Требование со случайными синусовыми ударами Атриовентрикулярная последовательная Отсутствие захвата (один раз) Отсутствие функции
Включение по умолчанию	Выкл

Аритмия

Базовый NSR	80 ударов в минуту
Фокус РVС	Левый фокус, стандартная синхронизация (за исключением отдельно указанных случаев)
Суправентрикулярная аритмия	Фибрилляция предсердий (грубая или мелкая), трепетание предсердий, синусовая аритмия,
	пропущенный удар (один раз), предсердная тахикардия, пароксизмальная предсердная
	тахикардия, узловой ритм и суправентрикулярная тахикардия

Преждевременная аритмия	.(Все разовые события) Преждевременное сокращение предсердий (РАС), преждевременное узловое сокращение (PNC), PVC1 левого желудочка, PVC1 левого желудочка - раннее, PVC1 левого желудочка - R на T, PVC2 правого желудочка, PVC2 правого желудочка - раннее, PVC2 правого желудочка - R на T, и мультифокальные PVC
Желудочковая аритмия	.PVC (6, 12 или 24 в минуту), частые мультифокальные PVC, бигеминия, тригеминия, многократные PVC (разовая пробежка 2, 5 или 11 PVC), вентрикулярная тахикардия, фибрилляция желудочков (грубая или мелкая) и асистолия
Нарушение проводимости	.Атриовентрикулярная блокада первой, второй или третьей степени и блокада правой или левой ножки предсердно-желудочкового пучка
Включение питания по умолчанию	.Нет (выкл)

Тестирование сигналов деятельности на ЭКГ

Амплитуда	.От 0,05 до 0,45 мВ (с шагом 0,05 мВ) от 0,5 до 5,5 мВ (с шагом 0,5 мВ)
Пульсовая волна	.30 ударов в минуту, 60 ударов в минуту, с шириной импульса 60 мс
Прямоугольный сигнал	.2,0, 0,125 Гц
Треугольный сигнал	.2,0, 2,5 Гц
Синусоида	.0,5, 5, 10, 40, 50, 60, 100 Гц
Сигнал обнаружения зубца R	.Гавертреугольник
Ритм зубцов R	.30, 60, 80, 120, 200 и 250 ударов в минуту
Ширина зубцов R	.от 20 до 200 мс (шаг 10 мс) Дополнительные шаги: 8, 10 и 12 мс
Погрешность частоты	.±1 %
Погрешность амплитуды	.±2 %, Канал II (Исключение: ±5 % для зубцов R ≤20 мс)
Включение питания по умолчанию	.Нет (выкл)

Дыхание

Частота	0 (ВЫКЛ), 15, 20, 30, 40, 60, 80, 100, 120 вдохов/выдохов в минуту
Изменения импеданса (Δ Ω)	0,2; 0,5; 1 или 3 Ω межпиковое изменение импеданса канала
Погрешность дельта	±10 %

Исходный уровень	. 500, 1000, 1500, 2000 Ω, Каналы I, II, III
Исходный уровень погрешности	. ±5 %
Канал дыхания	. LA или LL
Выбор апноэ	. ВЫКЛ, 12, 22 или 32 секунды (разовые события) или непрерывно (апноэ ВКЛ = дыхание ВЫКЛ)
Включение питания по умолчанию	. 20 вдохов/выдохов в минуту, дельта 1,0 $\Omega,$ исходный уровень 1000- Ω

Артериальное давление

Входной/выходной импеданс	. 300 Ω ±10 %
Входной диапазон возбудителя	. от 2,0 В до 16,0 В ср.кв.знач.
Диапазон входных частот возбудителя	. пост. ток, до 5000 Гц
Чувствительность датчика	. 5 µВ/В/мм рт.ст. Или 40 µВ/В/мм рт.ст.
Погрешность давления	. ±(2% от настройки + 2 мм рт.ст.) (Доступно только для возбуждения постоянного тока)
Статические уровни, Канал 1	10, 0, 80, 160, 240, 320, 400 мм.рт.ст.
Статические уровни, Канал 2	10, 0, 50, 100, 150, 200, 240 мм.рт.ст.
Статические уровни, Канал 3 (только ProSim 3)	5, 0, 20, 40, 60, 80, 100 мм.рт.ст.
Статические уровни, Канал 4 (только ProSim 3)	5, 0, 20, 40, 60, 80, 100 мм.рт.ст.
Динамические сигналы, Канал 1	. артериальное: 120/80 Лучевая артерия: 120/80 Левый желудочек: 120/00 Правый желудочек: 25/00
Динамические сигналы, Канал 2	. артериальное: 120/80 Лучевая артерия: 120/80 Левый желудочек: 120/00 Правое предсердие (центральное венозное или CVP): 15/10 Правый желудочек: 25/00 Легочная артерия: 25/10 Заклинивание легочной артерии: 10/2 Левое предсердие: 14/4

Динамические сигналы, Канал 3	
(только ProSim 3)	артериальное: 120/80
	Лучевая артерия: 120/80
	Левый желудочек: 120/00
	Правое предсердие (центральное венозное или CVP): 15/10
	Правый желудочек: 25/00
	Легочная артерия: 25/10
	Заклинивание легочной артерии: 10/2
	Левое предсердие: 14/4
Динамические сигналы, Канал 4	
(только ProSim 3)	Последовательность Свана-Ганза:
	Правое предсердие (CVP)
	Правый желудочек (RV)
	Легочная артерия (РА)
	Заклинивание легочной артерии (PAW)
Артефакт дыхания	Дельта АД изменяется от 3 до 16 мм рт.ст.
Выходной разъем	DIN 5-контактный
Включение питания по умолчанию	О мм рт.ст.

Температура

Температура	.0 °C (32 °F), 24 °C (75,2 °F), 37 °C (98,6 °F) и 40 °C (104 °F)	
Погрешность	. ±0,1 °C	
Совместимость	.Yellow Springs, Inc. (YSI), серии 400 и 700	
Выходной разъем	.DIN 4-контактный	
Включение питания по умолчанию0 °C (42 °F)		

Сердечный выброс (только Prosim 3)

Тип катетера	Baxter Edwards, 93a-131-7f
Коэффициент калибровки	0,542 (вводимый раствор при 0 °C), 0,595 (вводимый раствор при 24 °C)
Температура крови	37 °C (98,6 °F) ±2 %
Вводимый объем	10 куб. см
Температура вводимого раствора	0 °С или 24 °C ±2 % от значения
Сердечный выброс	2,5; 5; 10 литров в минуту ±5 %
Кривая сбоя подачи вводимого раствора	Доступен сигнал для моделирования
Кривая шунта слева направо	Доступен сигнал для моделирования

Калиброванный импульс	1,5 ° для 1 секунды (37 до 35,5 °)°
Выходной разъем	DIN 7-контактный
Включение питания по умолчанию	2,5 литра в минуту, вводимый раствор при 0 $^\circ\text{C}$

ЭКГ плода/матери (только ProSim 3)

Частота сердечных сокращений плода	
(постоянная)	60, 90, 120, 140, 150, 210 и 240 ударов в минуту
Частота сердечных сокращений плода (IUP):	140 ударов в минуту в начале, затем изменяется вместе с давлением
Сигналы внутриматочного давления	Брадикардия в начале сокращения матки, брадикардия на высоте сокращения матки и равномерное ускорение
Длительность сигнала	90 секунд, колоколообразная кривая давления, от 0 до 90 мм рт.ст. и возвращение к 0 мм рт.ст.
Период IUP	2, 3 или 5 минут, и ручной выбор
Включение питания по умолчанию	FHR 120 ударов в минуту, брадикардия в начале сокращения матки, ручная настройка

Настройка компьютера

USB-порт на входе устройства	Разъем Mini-В для управления компьютером
Скорость передачи данных	9600
Четность	Нет
Стоп-биты	1
Биты данных	8